On the propriety of restricted Boltzmann machines

نویسندگان

  • Andee Kaplan
  • Daniel J. Nordman
  • Stephen B. Vardeman
چکیده

A restricted Boltzmann machine (RBM) is an undirected graphical model constructed for discrete or continuous random variables, with two layers, one hidden and one visible, and no conditional dependency within a layer. In recent years, RBMs have risen to prominence due to their connection to deep learning. By treating a hidden layer of one RBM as the visible layer in a second RBM, a deep architecture can be created. RBMs are thought to thereby have the ability to encode very complex and rich structures in data, making them attractive for supervised learning. However, the generative behavior of RBMs is largely unexplored. In this paper, we discuss the relationship between RBM parameter specification in the binary case and the tendency to undesirable model properties such as degeneracy, instability and uninterpretability. We also describe the difficulties that arise in likelihood-based and Bayes fitting of such (highly flexible) models, especially as Gibbs sampling (quasi-Bayes) methods are often advocated for the RBM model structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Discriminative Restricted Boltzmann Machines are Universal Approximators for Discrete Data

This report proofs that discriminative Restricted Boltzmann Machines (RBMs) are universal approximators for discrete data by adapting existing universal approximation proofs for generative RBMs. Discriminative Restricted Boltzmann Machines are Universal Approximators for Discrete Data Laurens van der Maaten Pattern Recognition & Bioinformatics Laboratory Delft University of Technology

متن کامل

Mixing Rates for the Alternating Gibbs Sampler over Restricted Boltzmann Machines and Friends

Alternating Gibbs sampling is a modification of classical Gibbs sampling where several variables are simultaneously sampled from their joint conditional distribution. In this work, we investigate the mixing rate of alternating Gibbs sampling with a particular emphasis on Restricted Boltzmann Machines (RBMs) and variants.

متن کامل

Sparse Group Restricted Boltzmann Machines

Since learning in Boltzmann machines is typically quite slow, there is a need to restrict connections within hidden layers. However, the resulting states of hidden units exhibit statistical dependencies. Based on this observation, we propose using l1/l2 regularization upon the activation probabilities of hidden units in restricted Boltzmann machines to capture the local dependencies among hidde...

متن کامل

Inductive Principles for Learning Restricted Boltzmann Machines (DRAFT: August 25, 2010)

We explore the training and usage of the Restricted Boltzmann Machine for unsupervised feature extraction. We investigate the many different aspects involved in their training, and by applying the concept of iterate averaging we show that it is possible to greatly improve on state of the art algorithms. We also derive estimators based on the principles of pseudo-likelihood, ratio matching, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1612.01158  شماره 

صفحات  -

تاریخ انتشار 2016